78 research outputs found

    Follow the streakers - in flight decision-making by honey bees

    Get PDF
    Contains fulltext : mmubn000001_184347718.pdf (publisher's version ) (Open Access)Promotores : J. Raaijmakers en E. Roskam169 p

    Honeybee linguistics—a comparative analysis of the waggle dance among species of Apis

    Get PDF
    All honeybees use the waggle dance to recruit nestmates. Studies on the dance precision of Apis mellifera have shown that the dance is often imprecise. Two hypotheses have been put forward aimed at explaining this imprecision. The first argues that imprecision in the context of foraging is adaptive as it ensures that the dance advertises the same patch size irrespective of distance. The second argues that the bees are constrained in their ability to be more precise, especially when the source is nearby. Recent studies have found support for the latter hypothesis but not for the “tuned-error” hypothesis, as the adaptive hypothesis became known. Here we investigate intra-dance variation among Apis species. We analyse the dance precision of A. florea, A. dorsata, and A. mellifera in the context of foraging and swarming. A. mellifera performs forage dances in the dark, using gravity as point of reference, and in the light when dancing for nest sites, using the sun as point of reference. Both A. dorsata and A. florea are open-nesting species; they do not use a different point of reference depending on context. A. florea differs from both A. mellifera and A. dorsata in that it dances on a horizontal surface and does not use gravity but instead “points” directly toward the goal when indicating direction. Previous work on A. mellifera has suggested that differences in dance orientation and point of reference can affect dance precision. We find that all three species improve dance precision with increasing waggle phase duration, irrespective of differences in dance orientation, and point of reference. When dancing for sources nearby, dances are highly variable. When the distance increases, dance precision converges. The exception is dances performed by A. mellifera on swarms. Here, dance precision decreases as the distance increases. We also show that the size of the patch advertised increases with increasing distance, contrary to what is predicted under the tuned-error hypothesis

    TR-31 and AS 2805 (Non)equivalence report

    Get PDF
    We examine the security of the Australian card payment system by analysing existing cryptographic protocols in this analysis. We compare current Australian cryptographic methods with their international counterparts, such as the ANSI TR-31 methods. Then, finally, we formulate a formal difference between the two schemes using security proofs

    Security in banking

    Get PDF
    We examine the security of the Australian card payment system by analysing existing cryptographic protocols. In this analysis, we examine TDES and DES-V key derivation and the use of secure cryptographic devices, then contrast this with alternative mechanisms to enable secure card payments. We compare current Australian cryptographic methods with their international counterparts, such as the ANSI methods, and then motivate alternative methods for authenticated encryption in card payment systems

    Local interactions and global properties of wild, free-ranging stickleback shoals

    Get PDF
    Funding: Australian Research Council. A.J.W.W. and T.M.S. were supported by a Discovery Project Grant from the Australian Research Council. D.J.T.S. and J.E.H.-R. were supported by a Knut & Alice Wallenberg Foundation Grant.Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.Publisher PDFPeer reviewe

    Cohesion, order and information flow in the collective motion of mixed-species shoals

    Get PDF
    Financial support came from the Australian Research Council (grant nos. DP 160103905 and DE 160100630).Despite the frequency with which mixed-species groups are observed in nature, studies of collective behaviour typically focus on single-species groups. Here, we quantify and compare the patterns of interactions between three fish species, threespine sticklebacks (Gasterosteus aculeatus), ninespine sticklebacks (Pungitius pungitius) and roach (Rutilus rutilus) in both single- and mixed-species shoals in the laboratory. Pilot data confirmed that the three species form both single- and mixed-species shoals in the wild. In our laboratory study, we found that single-species groups were more polarized than mixed-species groups, while single-species groups of threespine sticklebacks and roach were more cohesive than mixed shoals of these species. Furthermore, while there was no difference between the inter-individual distances between threespine and ninespine sticklebacks within mixed-species groups, there was some evidence of segregation by species in mixed groups of threespine sticklebacks and roach. There were differences between treatments in mean pairwise transfer entropy, and in particular we identify species-differences in information use within the mixed-species groups, and, similarly, differences in responses to conspecifics and heterospecifics in mixed-species groups. We speculate that differences in the patterns of interactions between species in mixed-species groups may determine patterns of fission and fusion in such groups.Publisher PDFPeer reviewe
    • …
    corecore